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Abstract. Lorentz [ 1 ] pioneered the representation of flows at very low Reynolds number by a surface distribution 
of stokeslets - whose strengths, nowadays, are computed by surface-velocity collocations. That method is here 
compared with a representation widely used in flagellar hydrodynamics, by a curvilinear distribution of stokeslets 
and dipoles along the flagellar centreline; with the velocity of each cross-section expressed as a centreline value of 
the combined fields of singularities beyond a certain cutoff distance. The latter is also a good representation, and 
offers moreover some computational advantages. This paper establishes the equivalence of the two representations, 
and identifies those properties of Stokes flows which make both the dipoles and the cutoff essential to that 
equivalence. 

1. Introduct ion  

One important aspect of the great paper by H.A. Lorentz [1] celebrated in this volume is his 
demonstration that every flow at very low Reynolds number is a superposition of elementary 
flow fields - now called stokeslet fields - defined in terms of the total force (pressure and 
viscous force) with which each point on the solid boundary acts on the fluid. The whole flow 
field, in short, is a surface distribution of stokeslet fields. 

In many applications this result yields a highly convenient method for computing flows 
at very low Reynolds number associated with specified movements of a solid surface. It is 
simply necessary to determine that surface distribution of force whose corresponding flow 
field coincides on the surface with those specified movements. 

Nevertheless in one key application an alternative method has been found fruitful. This 
is the study of flows generated by movements of the flagella of microorganisms. Owing to 
their characteristic ratios of length to diameter of order 102 , any representation of the flow 
field in terms of a distribution of stokeslets over the boundary of each cross-section would 
tend to require that the flow field be resolved on the inconveniently small scale of a flagellar 
diameter. 

Workers in this field have preferred therefore to adopt a different approach, founded on 
what I shall here call "the basic theorem of flagellar hydrodynamics"; that is, the theorem 
stated on p. 194 of my 1975 John yon Neumann Lecture "Flagellar Hydrodynamics" [2]. It 
represents the flow, not by a surface distribution, but simply by a curvilinear distributio.n of 
elementary flow fields along the centreline of the flagellum. Each such elementary flow field 
does moreover include a stokeslet, defined in terms of the force exerted on the fluid by unit 
length of flagellum; nonetheless, the curvilinear distribution incorporates two new features 
absent from the surface distribution: 

(a) the stokeslet is accompanied by a hydrodynamic dipole, of strength proportional to the 
stokeslet strength resolved onto the plane normal to the centreline; while 

(b) each cross-section of the flagellum moves as a whole with a velocity which, besides 
including a term proportion to the local dipole strength, includes also the centreline 
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value of the linear combInation of all stokeslet fields associated with cross-sections more 
distant than a cutoff value 6, given as a certain multiple of the flagellar radius. 

Such a cutoff 6 is indeed much needed, since the velocity associated with a curvilinear 
distribution of stokeslet fields would become infinite (like In 6) if 6 were allowed to vanish. 

A brief recapitulation (with some historical notes) of the theorem's statement and proof, 
given in section 2, emphasizes above all its good accuracy: the error varies only linearly - 
rather than logarithmically as in some alternative formulations - with the ratio of flagellar 
radius to length-scale. Accordingly, the theorem offers a satisfactorily precise, yet numerically 
convenient, approach to flagellar hydrodynamics (see, for example, Higdon [3]-[4]), through 
the determination of that curvilinear distribution of stokeslet strengths which generates a given 
curvilinear distribution of velocities of flagellar cross-sections. 

The existing proof (section 2) of the basic theorem has an essentially ad hoc character. 
Nevertheless it seems appropriate, in a volume celebrating that paper of Lorentz [1] which 
established a quite general representation of any flow at very low Reynolds number as the 
linear superposition of a surface distribution of stokeslet fields, to consider whether this result 
might make possible a reinterpretation of the basic theorem. 

Such a reinterpretation is given below in sections 3 and 4. Here, respectively, each of 
the features (a) and (b) characteristic of the curvilinear distribution of elementary flow fields 
appearing in the basic theorem is reinterpreted in terms of the equivalent surface distribution 
of stokeslet fields. 

To this end, it is first shown that the total force (pressure and viscous force) with which 
each elementary area of flagellar surface acts on the fluid is to a good approximation uniform 
over any cross-section. This at first sight surprising result is closely parallel to the well known 
result (Batchelor [5], p.233) for motion of a sphere at very low Reynolds number. It means 
that the force exerted by a flagellar cross-section is distributed uniformly over its surface. 

It follows that the Lorentz distribution of stokeslet fields is a surface distribution whose 
vector strength per unit area is uniform over a cross-section. Thus the basic theorem, on 
elementary flow fields distributed along the centreline subject to the two special features (a) 
and (b), needs to be reinterpreted by comparison with the occurrence at each cross-section of 
stokeslet fields uniformly distributed around its perimeter. Briefly, this allows the following 
interpretations of those special features: 

(a) arises because the Laplace operator applied to a stokeslet field yields a dipole field, while 
moreover any difference between a nearly linear distribution of elementary flow fields 
and an associated nearly cylindrical distribution uniform over a cross-section can be 
related to the action of such a Laplace operator; while 

(b) arises because the uniform ring of stokeslet fields distributed around a given cross-section 
of radius a is found to produce at every point on the surface of a different cross-section 
a specific finite velocity, which indeed coincides with the centreline velocity associated 
with stokeslets distributed along the centreline beyond a cutoff distance 6. 

Here moreover the ratio 6/a is found to take the same value (0.5e 1/2 = 0.824) as in the basic 
theorem. 

Even though, for clear reasons of convenience, the basic theorem will probably continue 
to be used widely in flagellar hydrodynamics, I believe that confidence in its use may be 
reinforced by the above reinterpretation in terms of the important results of Lorentz [1 ]. 
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2. Mathematical aspects of the basic theorem 

Flagellar hydrodynamics is devoted to movements of microorganisms in fluid at Reynolds 
numbers so small that all effects of inertia (whether on the fluid or on the microorganism) are 
completely negligible. It means that both the resultant, and the moment, of all forces acting 
on the microorganism are zero at each instant. Also, the fluid satisfies the equations 

# V 2 u = V p  and V . u = 0  (so that V2p = 0) (l) 

appropriate to motions without inertia. 
The fundamental singular solution of these equations, representing the effect of a concen- 

trated external force F acting at a single point of the fluid, is the stokeslet field 

r 2 F + ( F  • r ) r  F .  r 
u = 87r#r3 , p -- 47rr3, (2) 

where r stands for vector displacement from the point of application of the force. (Thus this 
field satisfies Eqs. (1) with an additional term F6(r)  on the left-hand side of the first equation.) 
Here, the expression for p as the potential of a dipole field (with ( - F )  as the dipole strength) 
confirms the statement in section 1 that the Laplacian V2u (which by (1) is # - l V p )  is a 
velocity field of dipole type. 

Some special problems arise (see below) from the remarkable inverse-first-power depen- 
dence (2) of the velocity field on r (the distance from the point of application of the force). 
However, the classical paradox that, in unbounded fluid, such a velocity field has infinite 
energy disappears completely in any application to swimming microorganisms. Because the 
total force on the organism is zero (see above), its total reaction on the water must be zero; 
thus, the flow field is a combination of (i) stokeslet fields associated with flagellar thrust 
and (ii) stokeslet fields associated with an equal and opposite resistance to movement of the 
cell-body. Because the vector sum of all the stokeslet strengths is zero, the inverse-first-power 
terms in the combined far fields must cancel; accordingly, the kinetic energy of the fluid takes 
a sensible finite value (without any modified theory based on the Oseen equation having to be 
introduced). 

As explained in section 1, the basic theorem (see below) of flagellar hydrodynamics 
expresses in a convenient form the relationship between two curvilinear distributions; that is, 
between how a flagellum's velocity of movement and the force which it exerts are distributed 
along its length. 

THEOREM. If f(s) is the force per unit length with which a flagellum of small radius a 
acts on a fluid, where the variable s signifies distance measured along the centreline of the 
flagellum from some given cross-section, then the resulting fluid motion can be represented by 
a distribution of stokeslets along the centreline of strength f(s) per unit length, accompanied 
by dipoles of strength 

a2fn(s) 
4# (3) 

per unit length; here, fn(s) is the vector normal to the centreline obtained by resolving f(s) 
onto the plane normal to the centreline. The fluid velocity field u closely matches flagellar 
movements w such that the whole cross-section where s = So moves with velocity 

W(So) -- f,(so) + fro r°2f(s) + [f(s) .  ro] ro 
47r----~- >6 87r/zro3 ds, (4) 
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where ~5 = 0.5ae 1/2 = 0.824a and r0 is the position vector of the point so on the centreline 
relative to the point s. 

NOTES ON THE THEOREM. The general idea of the basic theorem (and of its proof) was given 
in special cases, and fruitfully applied, by Hancock [6]. Some similar results were given in 
very general cases by Batchelor [7] and Cox [8], who used a series expansion in integer 
powers of a parameter E = [ln(2e/a)]-1, where g is a flagellar length scale. Retention of one 
or two terms in such an expansion involves errors whose magnitude depends on the natural 
logarithm of 2g/a (which, for example, may only be 4.6 for 2g/a = 100). The word "closely" 
is used in the above theorem to indicate [2] that, by contrast, the error in Eq. (4) tends to zero 
linearly (rather than logarithmically) as a/g ~ O. All practical use of that equation demands, 
of course, some form of inversion of the relationship to derive the force distribution f(s)  in 
terms of the flagellar velocity distribution w(s) .  Eq. (4) makes this computationally feasible 
because it relates those two distributions as functions of just a single variable s, representing 
position on the centreline, with variations in every direction at right angles to the centreline 
eliminated. 

NOTES ON THE PROOF. The idea of the proof is, first, to pick a distance q which is a large 
multiple of the radius a but a small fraction of a flagellar wavelength; and, then, to show that 
stokeslets whose distance r0 from the cross-section s = so is less than q produce, together 
with their associated dipoles (3), a velocity on the cross-section's surface given closely by 
Eq. (4) with the integral limited to 6 < r0 < q. After that, the proof is readily concluded by 
recognizing that the fields (2) of all the other stokeslets (those with r0 > q) generate at the 
centre of the cross-section s = s0 a velocity given by the integral in (4) limited to r0 > q; 
while, moreover, all of them are far enough away to justify neglecting both (i) any differences 
between values at the cross-section's centre and on its surface and (ii) the inverse-cube velocity 
fields of their accompanying dipole distributions (3). 

CORE OF THE PROOF. In the proof's core, velocity contributions from singularities within 
r0 < q are calculated for a simplified case - such that, in this region, the flagellum is 
effectively cylindrical while any departures of f(s)  from its value at s = so are negligible. 
Then the proof's final section assesses the errors arising from those two simplifications. 

In conveniently chosen coordinates, with z measured along the axis of the cylinder from an 
origin at the centre of the cross-section s = so, the contribution from the tangential component 
fx of the uniform distribution (fx, fv, fz) of stokeslet strength is determined first. Since no 
dipole distribution (3) accompanies this tangential component, the velocity fields (2) of the 
distributed stokeslets combine to give 

q ~ + r3 , r3 , r3 ] dX, (5) 

where 

r =  [ ( x - X )  2 + y 2 + z  2]'/2 (6) 

represents distance from a stokeslet at (X, 0, 0). 
But the theorem is purely concerned with velocities on the surface of the cross-section 

s = so, where the above choice of coordinates yields 

x = O, y2 + z 2 = a2; so that r = (X 2 + a2) 1/2. (7) 
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Evidently, where x = 0, the y- and z-components of the velocity field (5) are zero (being 
integrals of odd functions of X). At the same time, the x-component can be evaluated, through 
an integration by parts in its second term, as 

2j_ - ;_q -ff  q r (q2 _7 2)1/2 (8) 

With an error of order (a/q) 2, this expression can be written as 

(41n q 
87r# a 87r# 

with 6 = 0.5aeU2. This in turn is the same as 

f~ fz 2ds. (10) 
<ro<q 87r# r 0 ' 

that is, as the contribution to the x-component of (4) from the fx-component of f (s) in r0 < q 
(where, in the present coordinates, ds = dX and ro = IX] ). 

Furthermore, the velocity field generated by the y-component fu of the stokeslet distribu- 
tion, with its accompanying dipole distribution -a2fy/4#, is 

r5 dX. (11) 

This is easily evaluated on the cross-sectional surface (7) because, with quantities of order 
(a/q) 2 again neglected, 

dX 
q ~ q r5 (12) 

(both sides taking the value 2/a2), so that the terms in y, y2 and yz that vary around the cross- 
section cancel out. Accordingly, the only nonzero component of (11) is its y-component 

(La + o l ( ) 87r# --~ q 7  = 8 21n2qa + 1  , (13) 

which by comparison with (9) can be written 

fv + fy (21n-~)" (14) 
47r----# ~ 

that is, as the contribution to the y-component of (4) from the fv-component of f (s) in r0 < q. 
The proof for the fz-component proceeds exactly as for the fu-component. 

ASSESSMENT OF ERROR. It remains to assess the errors which may have arisen through those 
two simplifications that were adopted in the core of the proof; namely, the assumptions of 
uniform stokeslet distribution and zero centreline curvature in r0 < q. We show that, if the 
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radius a is much less than other lengths in the problem, then the error varies linearly (rather 
than, say, logarithmically) with that ratio of lengths. 

For example, if points on the centreline have coordinates (X, a X  2, 0), corresponding to a 
curvature ~¢ in the plane z = 0, then g must be replaced in (5) and (6) by g - a X  2. On the 
cross-section x = O, y2 + z 2 = a 2 this, to a first approximation in ~;, makes 

1/2 
+ + = - -- [ ( 1 -  ay)2X 2 + a2j 1/2 , (15) ] 

exactly as if X were replaced by (1 - tcy)X. In short, there are relative errors of order aa in 
the constancy of the velocity distributions (10) and (14) all around the cross-section; that is, 
errors varying linearly with the ratio of the radius a of the flagellum to the radius of curvature 
of its centreline. 

Again, the effect of nonuniformity in stokeslet distribution may be test by inserting a factor 
(1 + ~X) within the integrals (5) or (11) to allow for the effect of a component of stokeslet 
strength varying at a relative rate per unit length alone the centreline. The result is to change 
(5) by an amount 

(0, ~y, ~z) 8 - ~  ( - 2 1 n  2q + 2)  (16) 

representing a relative error of order ~a varying linearly with the ratio of a to the length 
scale ~-1 of variation of stokeslet strength. The same order of magnitude error is produced 
in (11), and it may be concluded that a close approximation to the velocity distribution (14) is 
produced all over the cross-section s = so, as stated in the basic theorem. 

3. Spherical and circular means for Stokes flows. 

The last two sections of this paper reinterpret, respectively, those two features of the basic 
theorem that were designated (a) and (b) in section 1. Firstly, then, the presence of dipoles is 
discussed. 

There is an inherent relationship between any Lorentz representation of a flow at very low 
Reynolds number by means of a surface distribution of stokeslets and alternative represen- 
tations through centrally located stokeslet/dipole combinations. This relationship is already 
present in Stokes's classical motion of fluid generated when a sphere of radius a acts on it 
with force F. (Here, F = 67r#aU, where U is the sphere's resulting velocity.) As mentioned 
in section 1, the total force (pressure and viscous force) with which each unit of the sphere's 
surface area acts on the fluid takes a uniform value (Batchelor [5], p.233). This can be written 
F/47ra 2 (overall force divided by overall area) and so the Lorentz representation of the flow 
is as a uniform distribution of stokeslets of strength F/47ra 2 per unit area over the surface of 
the sphere. 

Now, because the stokeslet field (2) depends only on the vector displacement r, which 
signifies the position of a field point P relative to the stokeslet's position, the velocity at P 
due to stokeslets of total strength F distributed uniformly over a sphere of radius a centred 
on O is identical with the average velocity over a sphere of radius a centred on P due to just 
one stokeslet of strength F concentrated at O. This average velocity is often called a spherical 
mean. 

A familiar result for a solution of Laplace's equation is that its mean value over any sphere 
is equal to its value at the centre. But for a velocity field satisfying Eqs. (1) it is not u but its 
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Laplacian V2u which (itself) satisfies Laplace's equation. The spherical mean S(a) of such a 
velocity field u over a sphere of radius a is equal, not to the value of u at the centre P, but to 
the value of 

u-4-~a2V2u (17) 

at P. (This slightly less familiar result is proved by using the divergence theorem to express 
47ra2dS/da as the volume integral of V2u over the sphere's interior; which in turn is equal to 
the sphere's volume (47ra3/3) times the central value of V2u since all of its spherical means 
coincide with that central value.) 

Moreover, Eqs. (1) and (2) show how, when a stokeslet of strength F has u as its field,V2u 
is the field associated with a dipole of strength ( - F / # ) .  Accordingly, expression (17) is just 
that combination of the stokelet with a dipole of strength ( -a2F/6#)  which appears in the 
classical motion of Stokes - here reinterpreted in terms of Lorentz's surface distribution of 
stokeslets. 

The result analogous to (17) for a two-dimensional velocity field u(y, z) satisfying Eqs. 
(1) is that the circular mean C(a) of u ,  taken around any circle of radius a in the (y, z) plane, 
is equal to the value of 

u + l a 2 v 2 u  (18) 

at its centre P. (Here, the result emerges when the divergence theorem is used to express 
27radC/da as the area integral of V2u over the circle's interior; which is the circle's area 
7ra 2 times that central value with which all circular means of the harmonic function V2u 
coincide.) 

Such a locally two-dimensional field is generated by those stokeslets normal to the flagellar 
centreline whose strengths are designated in the basic theorem as f,~(s) per unit length. Now, 
if it can be shown that (as stated in section 1) the force with which a section of flagellum acts 
on the fluid is distributed uniformly around its perimeter, then also the Lorentz distribution 
of normal stokeslets is similarly uniform. Therefore its velocity field at P is identical to 
the circular mean C(a) around a circle centred on P for the field u of a line distribution of 
stokeslets concentrated along the x-axis. Eq. (18) for C (a), alongside a continued identification 
of the Laplacian V2u of the field of a stokeslet of strength F with the field of a dipole of 
strength (-F/#),  would then give a complete explanation of the result (3) that normal stokeslets 
of strength fn(s) per unit length are accompanied by dipoles of strength (-a2fn(s)/4#) per 
unit length. 

This plausible elucidation of the result (3) rests on the supposition that any normal force 
f,~(s) with which unit length of flagellum acts on the fluid is distributed uniformly around 
its surface. Section 3 is now concluded with a direct verification of this uniformity for the 
velocity field (11) associated with a force fu in the y-direction. 

Briefly, the velocity field (11) in the plane x = 0 has its x-component zero (as the integral 
of an odd function of X) and its//-component and z-components equal to 

[21n a 2 2 2  fy 2q 2y 2 y --Z ] 
U y  - 8~-# (y2 + Z2)1/2 + y2 + z 2 (y2 + z2)2j (19) 

Uz fu [, 2yz_ a2 2yz 1, 
-- 87r# / y  2 + z 2 (y2 + z2)2J ' (20) 
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from which the associated distribution of pressure p is derived, by Eq. (1), as 

y 
P -- 27r y2  q_ Z 2 " (21) 

Next, the (compressive) stress distributions 

Puu=P-2#--~y-y ,  P u z = - # \ O z  + O y J '  p z z =  p - 2 #  Oz 

can be calculated, and their values on the surface (7) of the cross-section obtained as 

Yu (y3 + 3yz2), , 3 Yu Putt -- 27ra 4 = 2-~a4 ~ z - Y2Z), Pzz -- (y3 _ yz2); 27ra 4 (23) 

from which it follows that the force per unit area with which the flagellum acts on the fluid 
has y- and z-components 

YPuy + Zpyz _ fy (y2 + z2)2 fy YPyz + Zpzz 
= and - O. (24) a 2~a a 4 2~a a 

These take, as previously stated, uniform values (equal, of course, to force per unit length 
divided by cross-section circumference). A similar check may be made for the fz-component 
of force, completing the elucidation of feature (a) of the basic theorem in terms of the Lorentz 
distribution. 

4. Stokeslet rings and their three-dimensional fields 

Its other feature (b) is related to that cutoff 6 which the inverse-first-power behaviour of a 
stokeslet field (2) makes necessary if effects on the flagellar surface of a curvilinear distribu- 
tion of stokeslets along the flagellar centreline are to be represented (as in the theorem) by 
corresponding effects on the centreline itself. It turns out that an identical cutoff is needed 
when effects of the Lorentz distribution of stokeslets around the flagellar surface are to be 
similarly represented. 

It has just been shown that, at each cross-section, the "ring of stokeslets" around the 
perimeter is of uniform strength, even for stokeslet components normal to the centreline (the 
corresponding result is sufficiently obvious by symmetry - as well as analytically immediate 
from (5) - for components parallel to the centreline). This section is concerned with inverse- 
first-power terms in three-dimensional fields associated with distributions of such azimuthally 
uniform stokeslet rings. 

As in section 3, we use the fact that a stokeslet field (2) depends only on the relative 
position r between field point and stokeslet. Accordingly, terms in r -1 in expressions (8) 
and (11) for the velocity field on the surface due to a distribution of stokeslets along the 
centreline have a "reciprocal" property: they are identical to terms in r -1 in the velocity field 
on the centreline due to a distribution of stokeslet rings of the same strength per unit length. 
On the other hand, these r - :  terms in that velocity field must take their centreline values 
at all points inside or on the flagellar surface; simply because, as cylindrically symmetrical 
potentials satisfying Laplace's equation throughout the interior of the flagellar surface, they 
are constrained to remain constant. In particular, the surface values of these terms in r-1 
associated with stokeslet rings coincide with centreline values; which themselves, as just 
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remarked, coincide with surface values due to a distribution of stokeslets along the centreline. 
Therefore, both distributions share the same cutoff value 6. 

This simple argument without the need for any calculation is supported, of course, by a 
detailed analysis where, in expressions (8) and (11), there is a substitution of each term 

F dx fo2 /, dx q (X 2 + a2)1/2 by q [X 2 + 4a 2 sin2(O/2)]l/2 dO (25) 

to represent the effect of stokeslet rings. Here, 2a sin(0/2) is the length of the chord joining 
points on a circular cross-section which subtend an angle 0 at the centre. With an error of 
order (a/q) 2, both terms in (25) take the same value 2 ln(2q/a), as follows from the standard 
integral result (itself derived by comparing the results of alternative substitutions 0 = 7r - 01 
and 0 = 202) 

fo r In [2 sin(0/2)] dO = O. (26) 

It may be noted that even though the inner integral in (25) becomes infinite for 0 = 0 
(where field point and stokeslet are at the same azimuthal position) the stokeslet ring as a 
whole has no corresponding singularity because the integral (26) converges. Its actual value 
of zero, moreover, confirms the previously given reinterpretation of the theorem's feature (b) 
in terms of those distributions of stokeslet rings which are suggested by the pioneering work 
of Lorentz [1 ]. 

5. C o n c l u s i o n  

The basic theorem, offering a computationally convenient representation of the flow field of 
a waving flagellum by a curvilinear distribution of singularities along the flagellar centreline 
- with two special features, that (a) the singularities include dipoles as well as stokeslets and 
that (b) centreline values of velocity fields are determined by singularities beyond a certain 
cutoff distance - was stated and proved in section 2. Then it was reinterpreted in sections 3 
and 4, covering features (a) and (b) respectively, and shown to be fully compatible with the 
Lorentz representation by a surface distribution of stokeslets. 

Both special features arise because a stokeslet field depends only on the relative position of 
singularity and field point. Accordingly, (a) the Lorentz field is effectively a circular mean of 
a curvilinear distribution of stokeslet fields, and thus equates to a stokeslet/dipole distribution 
as in the theorem; while, moreover, (b) the Lorentz distribution of stokeslet rings has values 
of inverse-first-power terms in its field on the flagellar surface which, by standard properties 
of harmonic functions, coincide with any interior value, including that centreline value which 
necessarily has the same cutoff distance as the surface field of a centreline distribution of 
stokeslets. 
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